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T H E O R Y  O F  N O R M A L  C O N T A C T  O F  R I G I D  B O D I E S  

V. N. S o l o d o v n i k o v  UDC 539.3.01 

The theory of normal contact of rigid bodies with allowance for Coulomb friction is developed. 
The Boussinesq principle is generalized to contact problems with friction. 

1. G o v e r n i n g  E q u a t i o n s .  The equations of equilibrium, the strain-displacement relations, and 
Hooke's law are written in the form [1] 

~ , ~  + fi = 0, ei; = 0.5(u~,j + uj ,0 = E - ' [ ( 1  + . ) ~ j  - "~j~kk]- (1.1) 

Here E is Young's modulus, v is the Poisson ratio, ui are the displacements, fi are the volume forces, 5ij are 
the Kronecker symbols, eij a r e  the strains, and uij are the stresses in the Cartesian coordinate system xi; the 
subscript i after a comma refers to partial differentiation with respect to xi; summation is performed over 
repeated indices (i, j ,  k = 1, 2, 3). 

2. W o r k  of  F r i c t i ona l  Forces  in D i s p l a c e m e n t  Var i a t i ons .  The general theory of normal contact 
of rigid bodies is developed on the basis of the results obtained in [2, 3] in solving the contact problems for 
a plate with an insert. We consider contact between two bodies V and I ? bounded by the surfaces S and S, 
respectively. Let these surfaces consist of two parts S = $1 U $2 and S = $1 U $2. The parts of $1 and $1 
that  come in contact with one another upon loading and deformation of bodies are denoted by S and S; note 
that the zero forces are set at the points of zero contact $1 and $1- At So_ and $2, the boundary conditions 
can specify, for example, the displacements at one point and the forces at the others: 

u = u *  on S~ and S~, p = p *  on S~' and S~, (2.1) 

where u* and p* are the specified displacement and force vectors, respectively; $2 = S~ U S~ t and $2 = S~ U S~. 
According to the principle of possible displacements, in any variations of the displacements ~ui and in 

the variations of appropriate strains ~eij the work of stresses in each body is equal to the work of the external 
forces applied to it: 

Here 

'o:I-,,'.,,", 'o.:S ..'o'', 'o,:i .-'o'',, 'o.:I ..'u''., 
V V $1 $2 

(2.2) 

and f and ~u are the vectors of volume forces and displacement variations. The quantities ~ ,  6~v, ~ 1 ,  
and ~@2 for a body ~" ale determined similarly. 

For both contacting bodies, the work of stresses should be equal to the sum of the works of external 
forces and the work of frictional forces in the contact region in the variations of displacements 6@q, i.e., 
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Substi tut ing 5~ and 5~ from (2.2) into (2.3), we obtain the equality 

f p + f p (2.4) 
S1 $I 

The  vectors lb and 5~2 are related to St.  Equality (2.4) holds irrespective of the form of boundary conditions 
at $2 and S2 and is used below to formulate the boundary  conditions at $1 and $1. 

3. C o n t a c t  B o u n d a r y  F r i c t i o n - I n d e p e n d e n t  C o n d i t i o n s .  We now set the surface f~ which is 
close to the surfaces $1 and ~)t and define the coordinate system ~a on it. At each point of f~, we restore 
the normal, find the points at which this surface intersect the surfaces S1 and St, and assign them the same 
coordinates ~a as those at the point considered on f~. We assume that  a one-to-one correspondence between 
the sets of all points on f~, St, and St is established by these triples of points, which lie on the same normal 
to f~, and a coordinate system ~a that  is common for ft, S1, and $I is found. 

At the points with the same coordinates ~a and the radius-vectors r,  Fl = r + hn ,  and ~ / =  r + hn,  
the metric tensors aaz, A~3. and . 4 ~  on ft, S1 and St axe, respectively, connected by the following relations 

[4]: 

Aa~ = aa~ - 2hba~ + h,ah,~ + h2ba~b~, AaZ = a ~  - 2~tb~ + h,ah,~ + h2ba~b~. (3.1) 

Here n and r a  are the unit normal and the basis vectors tangent to f~, respectively; we note that  the vector 
n is considered directed from $1 to $1 everywhere on f~, h and ~t are reckoned along the normal to f~ and 
are in absolute magnitude equal to the distances from St and St to f~, and ba3 are the coefficients of the 
second quadratic form of f~ ( b ~  = - n , a  �9 r3);  the subscript a after a comma denotes differentiation with 
respect to ~a (a, 3, w = 1, 2). It follows from (3.1) tha t  for the matrices Aa~ and A ~  to be nondegenerate 
and positive, it suffices to require tha t  the ratios of h and h to the curvature radii of ft and the pair-by-pair 
products  of their derivatives be small compared to the quantities aa3. In particular, one can use the surface 

St or $1 as f~. 
The  equality of the radius-vectors of any points on $I and S1 with coordinates ~a and ~ a  respectively, 

which come in contact  owing to the displacements u a n d / t ,  is represented in the form 

(r  + h n  + u ) ~  = (r  + h n  + i t ) ~ .  (3.2) 

Here the subscripts ~ and ~a refer to the coordinates of the points at which the quantities in brackets 
are calculated. Taking into account the small displacements and, hence, the small differences between the 
coordinates A~ a = ~a - ~a, we expand the right part  of (3.2) in a Taylor series at the point ~a, discarding 
the products  of A~ a by the derivatives of displacements and all terms containing powers of A~ a higher than 
the first power. We obtain the relation u = / t  + v3n + v a t  a, in which the vectors of displacements u on S1 
a n d / t  on S1 are taken at the points having the same coordinates ~a. The differences between the components 
of these displacements v3 = (u - / t )  �9 n = c + tt,~ A~ ~ and v~ = (u - ~i). r a  = ( a ~  - ~tba~) A~ ~ (a  : 1, 2) 
should be small, of the order of the displacements themselves. The quanti ty c = h - h ~> 0 is a distance (gap) 
between S1 and St measured along the normal to ft. If one takes f~ as $1, one has h = 0 and v3 = c and 
v ~ : A ~  ~ ( c ~ = l a n d 2 ) .  

Ignoring the term Ah = h z A~2 in the expression for v3, which is approximately equal to the difference 
between the values of h at the points ~ and ~Z and small compared with the magnitude of the gap c, we set 

v3 = c. Now v3 is a known function of the coordinates of only one point ~a. On the contact-free surfaces St 
and S~, as the nonpenetrat ion condition we require the fulfillment of the inequality v3 ~< c for each pair of 

their points lying on one normal to f~ and having the same coordinates ~a. 
In the presence of friction, the differences between the tangential displacements va can depend on 

the history of loading and interaction between the bodies. Slippage of $1 and $1 relative to each other 
and the change of the pairs of contacting points are taken into account by means of v~ in the contact 
region. The  partial derivatives of va with respect to the loading (time) parameter  r are the slip velocities 
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ioe~ = (aaz  - ]-tbe,~) ~)~ (the dot denotes differentiation with respect to r:  v ~ = d~Z/d 'r) .  If ~)~ = 0, we have 
~)~ = 0; the pair of contacting points does not change, and at tachment occurs. 

Wi th  va = (u - / t )  �9 r a  calculated, for each point ~a on S1, one can approximate the coordinates of 
the contacting point ~ on $1 from the equations v~ = (aa~ - hb~3)A~ ~ (a = 1 and 2). If one ignores the 
terms ]'tba~ in these equations as small quantities of the order of the ratios of h to the curvature radii of ft, 

we obtain ~a = ~a + v ~ (a = 1 and 2). 
We pass to integration in (2.4) over the coordinates ~a common for f~, $1, and S1 and use the relation 

between the magnitudes of the elementary sites dS1 = "/dS1 (3` = A1/2 f t  -1/2 > 0; here A and A are the 

determinants of the metric tensors Aa~ and Aa~, respectively). Let us find the contact regions ftl on f~ 
and the free unloaded edge ~2 (f~ = ftl U ft2). Let a t tachment  of 6u = 6/t occur everywhere on ftl  in the 
displacement variation in the contact region. Then, the work of frictional forces is equal to zero: 

f~ ft2 

In these integrals, we equate the coefficients of arbitrary variations of displacements 5/t on ftl and 5u and 
5/t on ft2 to zero. We find that ib = -3`p on fil and ib = p = 0 on ft2. We introduce the expansions of the 
force vectors into the normal and the tangents to f~: p = p a n  + p a t  a and io = l?an + p a t  a. In the contact 
region, owing to pressing of the surfaces or and ~?1 against each other and the directedness of the vector n 
from St to $1, the inequalities P3 < 0 and 1On = -3'pa > 0 should hold. The tangential components of the 
forces q = p a r  a and 0 =/ha  r a  = -3 'q  are the frictional forces on SI and S1 referred to a unit area of these 
surfaces. The  coefficient 3' depends on the dimensions of the elementary sites coming in contact on S1 and 
$1 and on the slope of them to each other in the initial undeformed state. On the free sites of S1 and $1, in 

the region of f t2  we h a v e 0 = q = 0 .  
Thus, we have the boundary conditions 

v 3 -= C, 15i =- - - ^ / P i ,  P3 < 0 on fh ,  1hi = Pi = 0. v3 ~< c on f12, (3.3) 

where i = 1, 2, and 3. These conciitions are formulated irrespective of the properties of $1 and $1; below, 
they are supplemented by the boundary conditions that  take into account the action of friction. In [5-7], 
the boundary  conditions in the contact region are also formulated for the pairs of points lying on the same 
normal to the specified surface; however, equality (3.2) is approximated differently. 

We now replace the variations in (2.4) by displacement velocities. With  allowance for (3.3) and ~;'3 = 0 
on ftl,  we obtain the expressions for the frictional-force work power at the slip velocities 

&q= /q.i, dSl =-/O.Od~, 

where/J  = ~)ar a. The densities Q = q �9 and Q = -~). /~ = 3`Q should be nonpositive: Q ~< 0, Q ~< 0, and 
~q ~ 0. On each contact surface, the velocities of its sliding relative to the other surface and the frictional 
forces are directed oppositely. With opposite sign, the quantities -(~q, - Q ,  and - (~  are the power of energy 
scattering for friction and its densities per unit area of $1 and S~. 

4. C o n t a c t  P r o b l e m s  w i t h  A l l o w a n c e  for  C o u l o m b  F r i c t i o n .  Let friction obeys the Coulomb 
law [5] in the contact region ftl; then the ratio between the moduli of the vectors of tangent and normal forces 

should not exceed the value of the friction coefficient tt; therefore, we should have P3 < 0 and F = [qI+PP3 <~ O. 
The equality F = 0 determines the minimum admissible angle of slope of the force vector p to the surface ft. 

Slippage of the surfaces Si and $1 relative to each other in the contact region with velocity/J  with 
friction can occur only if the angle of slope of the force vector p to the surface ft reaches the minimum 
admissible value and the frictional-force work power density is nonpositive (Q ~ 0). On each surface Si and 
S~, the velocities of its slip relative to the other  surface and the frictional forces have opposite directions 
(i~ = x q  and X ~ 0). The modulus of the vector [/~1 is not restricted by the friction law and can be arbitrary, 
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irrespective of the values of [P3[ and [ql. At the points on ~l  at which the slip conditions do not hold, there 
is a t tachment /J  = 0. 

Based on the aforesaid, we arrive at the boundary conditions 

v 3 - ~ c ,  iJa : 0 ,  P i : - - ' T P i ,  P3 < 0 ,  F < 0  on  ~ ,  

v 3 = C, F --- O, iza = X P a ,  Pi  : - ' T P i ,  P3 < O, X <~ 0 on  ~'/, (4.1) 

P i = ~ 5 i = 0 ,  v3~<c on f12. 

Here the normal and tangential to ~2 components of the vectors of displacements and forces u and p on $1 
a n d / t  and ~ on $1 are taken at the points lying on the same normal to f~ and having the same coordinates ~ 
as at the point considered on fl; v3 = ( u - / t ) . n ,  v~ = ( u - / t ) - r ~  (i = 1, 2, and 3; a = 1 and 2). Attachment 
occurs on f~  and also at the points on ~ ' ,  where X = 0. There is slip at the remaining points on ~]', and the 
frictional-force work power density at slip velocities is nonpositive. The inequality v3 ~< c holds everywhere 
on ~2 = fll U fi2 and f~l = fl~ U ~ ' .  

In contrast to [2], in (4.1), the possibility that  the inequality F < 0, which assumes discontinuous 
variation in ~" with time on ~ '  is satisfied, is ignored. In [2, 3], the case F < 0 on ~2~' is not realized in 
numerical solutions of the problem. In other aspects, expressions (4.1) are a generalization of the boundary 
conditions given in [2, 3] for a plate with an insert. 

The partitions ~ = f~l U~2 and ~1 = ~ U ~ '  are determined only with the use of the quantities P3 and 
F at the current moment of time. These values and the regions f~ ,  f~]', and f~2 and the domains of solution 
of the problems as a whole can depend on the history of loading of the bodies and at tachment and slip of 
the contacting surfaces relative to each other. The problems subject to boundary conditions (4.1) should be 
solved with allowance for the loading history. 

It is noteworthy that the boundary conditions (4.1) are satisfied at the pairs of points lying on one 
normal to f~ that  are specified according to the proposed approximate formation of the problem, rather than 
at the contacting points. The possibility of slippage of the surfaces $1 and S1 in the contact region relative to 
each other and the possibility of changing the pairs of contacting points is taken into account by means of the 
differences between the tangential displacements yd. Calculating va, one can approximate the coordinates of 
the points of contact. 

When there is no friction, supplementing (3.3) with the expressions in which the tangent forces in the 
contact region are zero, we obtain the following boundary conditions: 

V 3 = C, Pa  = Pa ~- 0, 93 -~" --~P3,  P3 < 0 on  ~1 ,  Pi = Pi  = 0, v3 ~< c on f~2 (4.2) 

(i = 1, 2, and 3; a = 1 and 2); note that  these conditions follow from (4.1) for # = 0. The regions f~l and 
f~2 are determined from the solution of the problem. In the problem for Eqs. (1.1) subject to boundary 
conditions (2.1) and (4.2), we have a unique solution. The functional of the total potential energy 

vu~ sJ'uDJ' 
reaches the minimum on it in the space of displacements which are subject to the boundary conditions u = u* 
on S~ and S~ and the nonpenetration condition v3 ~< c everywhere on f~ = ~1 U f~2. 

5. G e n e r a l i z a t i o n  of  t h e  B o u s s i n e s q  P r inc ip l e .  In many studies (see, for example, [5, 8]), the 
Boussinesq principle is used to find the boundaries of the contact zones for frictionless problems; according to 
this principle, in the contact region f~l, in approaching the boundary with the free-edge region ~2 the normal 
force P3 should tend to zero. In the presence of friction, the principle can be supplemented by the assumption 
that  in the at tachment region f~,  the force function F tends to zero as the boundary with the slip region 
f~' is approached. If f~  is adjacent to f~2, one can expect that  the functions P3 and F will tend to zero in 
~ in approaching the boundary with f~2. Satisfaction of the formulated conditions ensures continuity of the 
required functions upon passage through the contact boundary. This generalized principle is applied in [2, 3] 
to the solution of the contact problems for a plate with an insert by the finite-element method. 
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